FAQ: How to use latent factors as EFA indicators such as in second order ESEM.

Here is an outline of a 3-stage estimation procedure, which will allow you to use latent variables in combination with other latent or observed variables to conduct a second order EFA.

This approach is similar to EwC approach (ESEM-within-CFA) described in

H. W. Marsh, A.J.S. Morin, P. D. Parker, and G. Kaur (2014) Exploratory Structural Equation Modeling: An Integration of the Best Features of Exploratory and Confirmatory Factor Analysis. Annu. Rev. Clin. Psychol. 2014. 10:85-110.

http://www.vanderbilt.edu/psychological_sciences/graduate/programs/quantitative-methods/quantitative-content/marsh_morin_parker_kaur_2014.pdf

Stage 1. Estimate the full correlation matrix of all the variables in the future EFA model with a sample run like this (here the goal is to estimate the full correlation matrix for the latent variables F1, ..., F9.)

Model:

- F1 by A1-A5*1;
- F2 by B1-B6*1;
- F3 by C1-C8*1;
- F4 by D1-D3*1;
- F5 by E1-E4*1;
- F6 by M1-M4*1;
- F7 by G1-G5*1;
- F8 by K1-K6*1;
- F9 by L1-L4*1;

F1-F9@1;

savedata: tech4=correl.dat;

Stage 2. Remove/delete the factor means from the correl.dat file (the first nine entries in the above example). Then run an EFA on that correlation matrix. In this example we run a second order 3 factor EFA.

DATA: File IS correl.dat;

TYPE IS correlation; nobs=589; !(this is the number of observations from Stage 1)

VARIABLE: Names are f1-f9;

ANALYSIS: TYPE = efa 3 3;

Stage 3. Determine all large (>0.3) and significant loadings from the Stage 2 EFA and insert those in the Stage 1 input. For example if the stage 2 result looks like this

GEOMIN ROTATED LOADINGS (* significant at 5% level)

	1 3	2 3		
F1	0.927*	0.009	-0.196*	
F2	0.964*	-0.089	0.000	
F3	0.507*	0.326*	0.033	
F4	0.435*	0.004	0.341*	
F5	0.346*	0.625*	-0.009*	
F6	-0.002	1.251*	-0.300*	
F7	0.164*	0.743*	0.045	
F8	0.040	0.300*	0.636*	
F9	-0.015*	0.210	0.812*	

Then use the following model in Stage 3 and as your final model

Model:

F1 by A1-A5;

- F2 by B1-B6;
- F3 by C1-C8;
- F4 by D1-D3;
- F5 by E1-E4;
- F6 by M1-M4;
- F7 by G1-G5;
- F8 by K1-K6;

F9 by L1-L4;

- FF1 by F1-F4; ! (those are determined in stage 2 the significant/large loadings)
- FF2 by F3 F5-F7; !(those are determined in stage 2 the significant/large loadings)
- FF3 by F4 F8 F9; !(those are determined in stage 2 the significant/large loadings)